
Supplementary Information

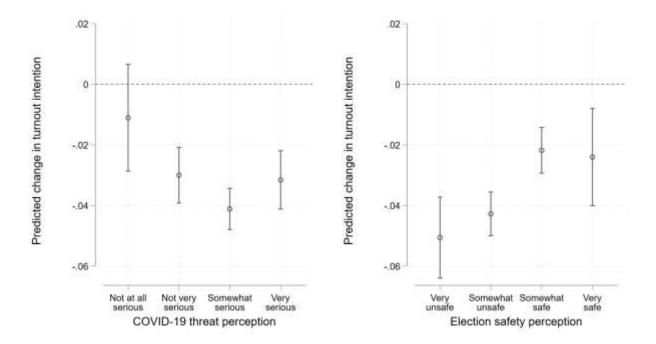

Communicating safety precautions can help maintain in-person voter turnout during a pandemic

Figure S1. Non-linear specification. Predicted pre-post change in turnout intention by threat perception (left); Predicted marginal effect of COVID-19 prime on turnout intention (right). Note: 95% confidence intervals, two-tailed.

Figure S2. Non-linear specification. Effect of election safety perception on pre-post change in turnout intention. Note: Controlling for COVID-19 threat perception, age, education, income, urban density, gender, and region. 95% confidence interval.

Figure S3. Non-linear specification. Effect of prior wave COVID-19 threat perception on prepost change in turnout intention controlling for age, education, income, urban density, gender, and region (left). Effect of prior wave election safety perception on pre-post change in turnout intention controlling for COVID-19 threat perception, age, education, income, urban density, gender, and region (right). Note: 95% confidence intervals. N=4,571, fielded July 22-August 9, 2020 using Dynata. Quotas set on re-contacts in an identical fashion as for Study 1.

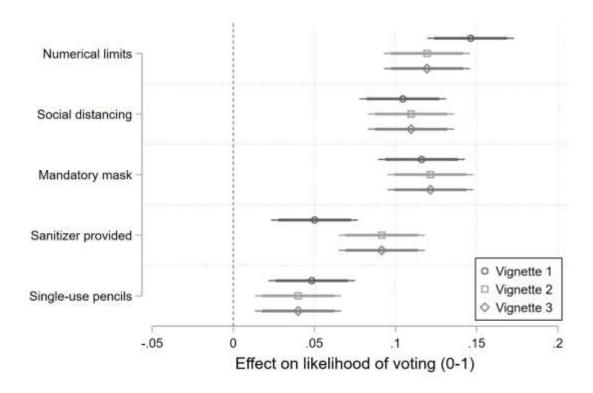


Figure S4. Estimates for Study 3 broken down by vignette. 90 and 95% confidence intervals.

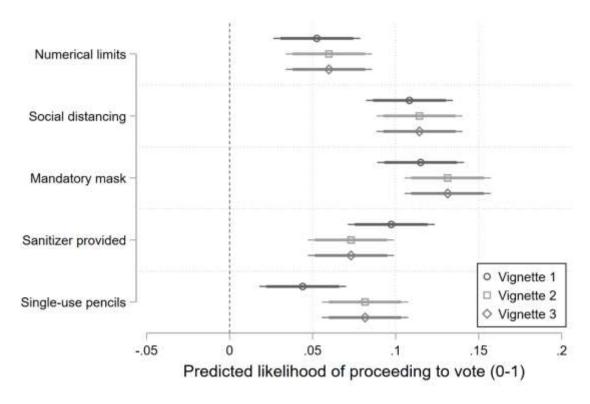


Figure S5. Estimates for Study 4 broken down by vignette. 90 and 95% confidence intervals.

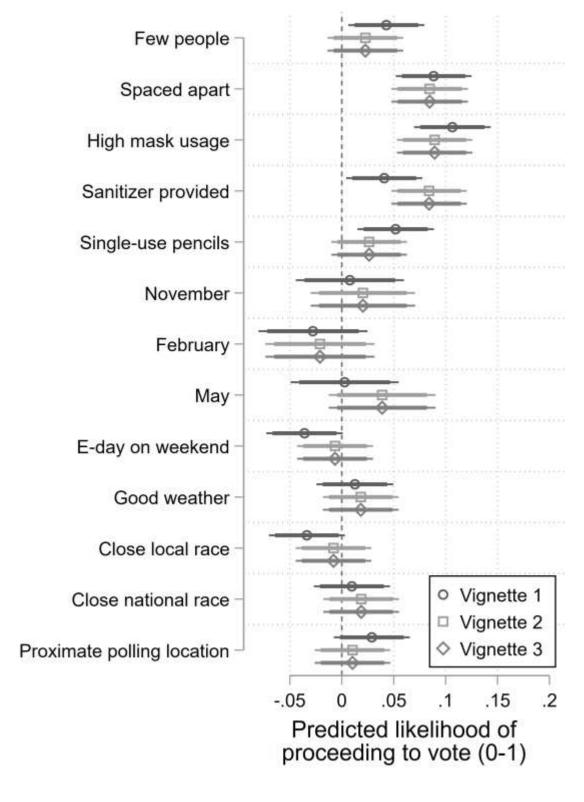


Figure S6. Estimates for Study 5 broken down by vignette. 90 and 95% confidence intervals.

Table S1. Panel data robustness checks

	Fixed Effects		LDV	
	Coef.	SE	Coef.	SE
In-person voting safety perception	0.014**	0.004		
COVID-19 threat perception	0.008	0.005		
In-person voting safety perception t-1			0.012***	0.003
COVID-19 threat perception t-1			0.009***	0.002
Education			0.005	0.003
Income			0.004**	0.001
Age			0.000*	0.000
Female			-0.004	0.004
Quebec			-0.003	0.008
Ontario			-0.000	0.007
West			-0.008	0.007
Vote intention _{t-1}			0.801***	0.016
Constant	-0.074***	0.011	0.115***	0.018
R^2	0.01		0.659	
N	17712		4571	
N (Groups)	12644			

* p<0.05, ** p<0.01, *** p<0.001. Note: Robust standard errors. The outcome variable in the fixed effects model is pre-post change in turnout intention (-1 to 1), and the outcome variable in the lagged dependent variable model (LDV) is pre-treatment vote intention, rescaled 0-1 where 1 means the respondent is certain to vote. Model 1 shows that within-respondent change in in-person voting safety perception is significantly associated with changes in the pre-post change in turnout intention at the 0.01 level. Predictions from this model suggest that we should observe within-respondent, pre-post reductions on the order of 0.06 points among those who perceive in-person voting to be very unsafe, which weakens to 0.02 points for those who perceive it to be very safe. However, because this is a fixed effects specification we must account for the fact we are using only within-respondent variation in our treatment and outcome (see Mummolo & Peterson, 2018). We express our effects in terms of fixed effects residualized treatment and outcomes. Within-respondent over time, a one standard deviation decrease in in-person vote safety perceptions is associated with a 0.06 standard deviation decrease in vote intention change. That is, declining safety perceptions between contact and re-contact periods are associated with stronger pre-post reductions in turnout intention within-respondents. Our LDV model predicts that moving from respondents with perceptions that in-person voting is very safe to very unsafe at t-1 is associated with a 0.04 point reduction in turnout intention (p<0.001) controlling for demographics, COVID-19 threat perceptions and past values on turnout intention.

References

Mummolo, Jonathan and Erik Peterson. 2018. "Improving the Interpretation of Fixed Effects Regression Results." *Political Science Research and Methods* 6 (4): 829-835.